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Abstract: Antimicrobial therapy is one of the most important medical developments of the 20th century; however, 

the spread of drug resistance in health care settings and in the community threatens the enormous benefits that 

antibiotic therapy offers. Infections caused by resistant bacteria cause more than two times the rate of adverse events 

compared with similar infections caused by susceptible strains. These adverse events may be clinical or economic 

and primarily reflect failure or delay in antibiotic therapy. The magnitude of these side effects becomes more 

pronounced as disease severity, strain virulence, or host susceptibility increases. The negative effects of antibiotic 

resistance can be measured at the patient level by increasing morbidity and mortality, at the healthcare level by 

increasing resource use, higher costs and reduce hospital performance, and at the societal level by broader empiric 

antibiotic treatment guidelines. treatments. therapy. In this review, we will discuss the negative impact of antibiotic 

resistance on patients, health care systems, and society. 
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1.   INTRODUCTION 

Antibacterial therapy is one of the most important medical breakthroughs of the 20th century and has become one of the 

pillars of modern medicine in preventing millions of premature deaths from bacterial infections. In the period before the 

introduction of antibiotics, the mortality rate from pneumonia caused by Streptococcus pneumoniae reached 40% [1], the 

mortality rate from Staphylococcus aureus bacteremia was 80% [2], and 97% of patients with endocarditis died. [3]. Before 

antibiotics, wound infections were often treated with amputations; In fact, during World War I, 70% of amputations were 

performed as a result of wound infection [4]. Antibiotics have radically changed the fate of patients with such infections, 

changing the way diseases such as tuberculosis and syphilis are treated and cured. In addition, the ability to treat and cure 

infections has enabled advances in modern medicine, such as increasingly complex surgeries, transplants, and 

chemotherapy. Unfortunately, the spread of resistance in healthcare settings and communities is jeopardizing the vast 

improvement in the availability of antibiotic therapies [5]. Microbiological tests for antibiotic resistance are intended to 

classify bacterial strains into curable and incurable categories and to give physicians an indication of the possible use of 

drugs to treat patients. Clinical MIC thresholds distinguish between infections that are likely to respond and those that are 

not likely to respond to antibiotic therapy [6], with organisms classified as “resistant” implying a high probability of 

treatment failure. However, the MIC limits are not precise; There is a gray area. Resistance does not always result in 

inadequate therapy or treatment failure, and infections caused by fully susceptible organisms can result in treatment failure. 

The increase in MIC appears to have an independent effect on the decreased efficacy of various antibacterial drugs, 

independent of microbiological susceptibility testing. For example, failure of vancomycin treatment is not uncommon, even 

when methicillin-resistant S. aureus (MRSA) strains are susceptible to vancomycin but have high vancomycin MICs (1–2 

μg/mL) [7]. Just as organisms considered “susceptible” to a particular antibiotic may fail, so resistant isolates may respond. 
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For example, beta-lactam antibiotics remain suitable for the treatment of non-CSF pneumococcal infections regardless of 

the in vitro susceptibility defined by the thresholds [8]. In this review, we will discuss the negative impact of antimicrobial 

resistance on patients, the healthcare system and society. 

Historical Perspective 

The resistance has been with us for a long time. Bacteria have an extraordinary variety of genetic mechanisms for resistance 

to antibacterial drugs, and there is a large pool of antibiotic resistance genes in nature that have evolved over millions of 

years [9]. Microorganism analyzes and epidemiological data suggest that the development and spread of multidrug-resistant 

microorganisms has accelerated dramatically over the past 50 years. This period coincides with the discovery and increasing 

use of antibacterial agents [9]. history of resistance to S.aureus provides an example from history. Abrams et al. described 

penicillinase before the clinical use of penicillins [10] and when penicillinase production in S. aureus was still rare. 

However, following the introduction of penicillin, it spread rapidly and by the late 1940s around 50% of S. aureus isolates 

in the UK were resistant to penicillin.As a result, resistance to tetracyclines and macrolides increased in the 1950s. 

Methicillin was introduced in 1959 to treat penicillin-resistant S. aureus, but isolated cases of S. aureus with acquired 

methicillin resistance emerged in 1961 (ca.MRSA). Multidrug-resistant (MDR) MRSA isolates were quickly isolated from 

other European countries, then Japan, Australia and the United States and spread to hospitals in most parts of the world and 

are now spreading in the community [11]. 

Direct Adverse Outcomes Related to Resistance 

Broadly speaking, infections caused by resistant bacterial strains lead to up to two-fold higher rates of adverse outcomes 

compared with similar infections caused by susceptible strains [12]. These adverse outcomes may be clinical (death or 

treatment failure) or economic (costs of care, length of stay) and reflect both treatment delays and the failure of antibiotic 

treatment to cure infections. The magnitude of these adverse outcomes will be more pronounced as disease severity, strain 

virulence, or host vulnerability increase. It is the cost of these treatment delays and failures to patients and the healthcare 

system that forms the basis of the negative impact of antibiotic resistance. For example, in the case of bacteraemia and other 

serious infections due to MRSA, a significantly higher case fatality rate has been clearly demonstrated as compared with 

methicillin-susceptible S. Extended-spectrum β-lactamase (ESBL) production among Enterobacteriaceae is associated with 

higher rates of treatment failure and mortality in patients with bacteraemia compared with bacteraemia caused by non-ESBL 

producers [15–17]. ment failure rates for patients infected with ESBL-producing Klebsiella pneumoniae are almost twice 

as high as for those with non-ESBL-producing K. Carbapenem-resistant Enterobacteriaceae (CRE) are now the emerging 

contemporary threat. Infections caused by carbapenem-resistant K. to five-fold higher risk of death than infections caused 

by carbapenem-susceptible strains [18,19]. Infections caused by CRE are associated with crude in-hospital mortality of 

48%–71% [18,19], whereas carbapenem-resistant Acinetobacter baumannii bacteraemia is associated with a 14-day 

mortality of Although death is the most severe adverse outcome of antibiotic resistance, other adverse outcomes are evident. 

For example, among adults with bacteraemic pneumococcal pneumonia, infection with penicillin-nonsusceptible 

pneumococci is associated with more than four times the risk of suppurative complications [21]. gonorrhoeae strains with 

resistance to most antibiotics, leading to treatment failures and subsequent reproductive tract disease, infertility and promo- 

Increasing rates of bacteraemia are now well described owing to the failure of fluoroquinolone prophylaxis for transrectal 

ultrasound-guided prostate biopsy [23,24]. In addition, previous fluoroquinolone use in patients with chronic liver disease 

as prophylaxis against spontaneous bacterial peritonitis has been significantly associated with community-onset MDR 

bacterial infections [25]. 

How Resistance Confers Adverse Outcomes 

The reasons for the treatment failures associated with infections caused by resistant bacteria are probably multifactorial, but 

include bacterial fitness, greater severity of underlying illness [19], delays in initiation of effective therapy and in some 

cases a lack of effective therapy [12,26]. How- ever, resistant strains seen in the clinical setting are largely those that are 

able to both survive and effectively spread in high-density antibiotic environments, and are therefore usually fitter than other 

strains belonging to the same species [12]. Resistance frequently leads to delays in the administration of effective therapy, 

and a mismatch between empirical therapy and subsequent antibiotic susceptibility test results is the most significant factor 

in delaying effective therapy [12]. in one study, patients with ESBL-producing K. coli infections were treated with effective 

antibiotics a median of 72 h after infection was suspected, whereas matched con- trols infected with non-ESBL-producing 

strains of coli received appropriate antibiotics after a median of 11. 5 h [26]. A meta-analysis corroborated the significantly 

increased likelihood of delay in effective therapy in pneumoniae bacteraemia have been shown to experience delays in the 
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administration of antibiotics with in vitro activity against carbapenem-resistant K.(Table 2)  illustrates examples of the 

consequences of antibiotic resistance. ) The delayed administration of active agents in the case of resistant infections may 

be further prolonged by delays in the availability of comprehensive antibiotic susceptibility data. For example, manual 

testing may be required for polymyxin B andtigecycline susceptibilities, which are not represented in initial testing panels 

[19]. Patients who do not receive appropriate treatment promptly are at increased risk for a longer disease course or fatal 

outcome and remain infectious for longer periods, increasing the likelihood of transmission of the resistant microorganisms 

if infection control measures are not implemented [28].  

The poor outcomes observed in patients with infections caused by MDR organisms cannot be explained completely by 

delays in the initiation of antibacterial therapy with in vitro activity. Patients infected with resistant bacteria have additional 

risk factors, such as more severe underlying illness requiring longer hospitalization, which contribute to worse outcomes. 

However, well-designed studies that have controlled for these potential confounders, have found substantially higher 

mortality among patients infected with resistant bacteria compared with patients infected with susceptible organisms 

[18,19,29].showed that treatment with one or more antibiotics to which the patient-specific carbapenem-resistant K. 

pneumoniae isolates were susceptible in vitro was not associated with patient survival, even with early initiation of active 

therapy [19]. This adds to the evidence that patients with infections due to MDR bacteria have underlying diseases of 

increased severity. For example, patients with CRE infections are more likely to have received a transplant, require 

mechanical ventilation, a pro- longed hospitalization, intensive-care unit (ICU) stays, the use of central venous catheters 

and are more likely to have poor functional status [18,19]. Indeed, underlying conditions and comorbidities are important 

factors responsible for in-hospital mortality among patients with resistant infections [30]. Finally, patients infected with 

organisms that are resistant to all available antibacterials may require surgery to remove the nidus of infection, and infections 

that are not amenable to surgical debridement have high mortality rates [12]. The Negative Impact of Resistance on Patients 

without Multidrug-resistant Organisms Infections The negative impact of multidrug-resistant organisms is not limited to 

patients who are infected by them. The negative impact of antibiotic resistance on all patients includes the effect it has on 

empiric antibiotic regimens, utilizable antibacterial. (Table 1). 

TABLE 1. Effects of antibiotic resistance 

 

Resistance rates have implications for antibiotic prescribing policies and recommendations, with the loss of the ability to 

use  narrow-spectrum agents to treat common diseases when population-level resistance  reaches to a certain threshold of   

[12]. Empiric therapy guidelines, while based on local susceptibility testing for empiric antibiotic use decisions for common 

conditions, have been revised frequently over the past decades. to reflect increasing antibiotic resistance.  The empiric 

treatment of a common clinical situation in the hospital such as febrile neutropenia is also influenced by antibiotic resistance. 

For neutropenic sepsis, broad-spectrum therapy is active against Pseudomonas spp. should be started before microbiological 

test results  are known [31,32].Current guidelines  recommend the use of pseudomonal-resistant beta-lactams, such as 

cefepime,  carbapenem, or piperacillin-tazobactam [32]. The end result is an overuse of  empiric antibiotic  regimens, which 

may be broader than necessary based on  antibiotic sensitivity testing for these clinical situations (Table 2). 
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TABLE 2. Examples of the consequences of antibiotic resistance 

 

Patients who do not receive appropriate treatment promptly are at increased risk for a longer disease course or fatal outcome 

and remain infectious for longer periods, increasing the likelihood of transmission of the resistant microorganisms if 

infection control measures are not implemented [28]. The poor outcomes observed in patients with infections caused by 

MDR organisms cannot be explained completely by delays in the initiation of antibacterial therapy with in vitro activity. 

Patients infected with resistant bacteria have additional risk factors, such as more severe underlying illness requiring longer 

hospitalization, which contribute to worse outcomes. However, well-designed studies that have controlled for these potential 

confounders, have found substantially higher mortality among patients infected with resistant bacteria compared with 

patients infected with susceptible organisms [18,19,29]. pneumoniae isolates were susceptible in vitro was not associated 

with patient This adds to the evidence that patients with infections due to MDR bacteria have underlying diseases of 

increased severity. Indeed, underlying conditions and comorbidities are important factors responsible for in-hospital 

mortality among patients with resistant infections [30]. Finally, patients infected with organisms that are resistant to all 

available antibacterials may require surgery to remove the nidus of infection, and infections that are not amenable to surgical 

deb 

The Negative Impact of Resistance on Patients without Multidrug-resistant Organisms Infections 

The negative impact of antibiotic resistance on all patients includes the effect it has on empiric antibiotic regimens, utilizable 

antibacterial classes and the use of agents that are less efficacious (Table 1). The prevalence of resistance has implications 

for antibiotic prescribing policies and recommendations, with the loss of use of narrow-spectrum agents for the treatment 

of common dis- eases when resistance at the population level reaches a certain Guidelines for empiric therapy, although 

based on local antibiograms to inform empiric antibiotic decisions for common conditions, have been altered regularly over 

the last several decades to account for the increase in antibiotic resistance. Empiric treatment for a common clinical scenario 

in hospitals such as neutropenic fever is also impacted by antibiotic resistance. Treatment guidelines now recommend an 

anti- pseudomonal β-lactam agent, such as cefepime, a carbapenem, or piperacillin-tazobactam [32]. The end result is 

overuse of empiric antibiotic regimens, which may be broader than is required on the basis of antibiotic susceptibility testing 

for these clinical scenarios (Table 2). The marked and continued increase of resistance among Streptococcus pneumoniae 

over several decades has informed guidelines for the empiric treatment of otitis media, meningitis and pneumonia [33]. 

Furthermore, the emergence of penicillin- resistant and cephalosporin-resistant pneumococcal meningitis, led to 

recommendations by the American Academy of Pediatrics for the inclusion of vancomycin in empiric therapy regimens for 

all suspected cases of bacterial meningitis. The result of this has been a substantial increase in vancomycin use and, in some 
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places, no improvement in outcomes from pneumococcal meningitis [34]. The emergence of MDR Gram-negative bacteria 

has also led to the revival of older antibiotics that had fallen out of favour because of their reduced efficacy and high toxicity 

[35]. gested for inclusion in empirical antibiotic regimens in the ICU setting in hospitals where the observed probability 

that a Gram- negative bacterium is polymyxin-only-susceptible is close to 50% [35,36]. and Proteus mirabilis [36,37], in 

centres with endemic carbapenem resistance, empiric therapy decisions now may dictate the use of colistin over other agents 

[36]. When the former are used empirically, patients with susceptible strains are actually receiving treatment with inferior 

agents. Prime examples are colistin and vancomycin, which are often used empirically instead of a β-lactam agent when a 

resistant 

The Impact of Resistance on Healthcare Systems 

The negative impacts of antibiotic resistance on healthcare systems as a whole are substantial, as resistance adds to the 

number of infections that occur, to expense, to interrupted hospital activity and to limitation of treatment options. Resistant 

bacterial spread reflects both additional infections caused by resistant strains and replacement of susceptible strains by 

resistant strains. There is evidence of additional infections caused by resistant strains rather than merely a replacement of 

susceptible strains [38,39]. In other words, if before the onset of antibiotic resistance there were 100 cases of infection 

caused by susceptible strains, the onset of anti- biotic resistance would result in 90 infections caused by susceptible strains, 

and 30 infections caused by resistant strains. Increasing antibiotic resistance potentially threatens the safety and efficacy of 

surgical procedures and immunosuppressive chemotherapy. It is estimated that between 38$7% and 50$9% of pathogens 

causing surgical site infections and 26$8% of pathogens causing infections after chemotherapy are resistant to standard 

prophylactic antibiotics in the USA [41]. Hospitals spend, on average, an additional US$ 10,000 to 40,000 to treat a patient 

infected by an MDR organism. Antibiotic resistance influences the total disease management costs by increasing ICU and 

hospital stays and more than half of extra healthcare expenditure caused by multidrug-resistant organisms is to cover 

additional nursing and medical care [46]. Pharmacy services (including antibacterials) account for <2% of additional costs 

[46] (Table 1). There is also an enormous impact of antibacterial resistance on day-to-day hospital activity. Total closure of 

an affected ward or unit is one of the most expensive infection control measures that may be required to contain a nosocomial 

outbreak. In addition to these costs, are the consumable, microbiology and staff costs associated with the implementation 

of infection control measures, such as screening and contact isolation, intended to both prevent and eradicate MDR bacteria 

from healthcare facilities [28]. 

Factors that Mitigate the Adverse Effects of Antibacterial Resistance 

Within the healthcare system, there are cases in which antibiotic resistance may therefore limit available and often lifesaving 

treatment options. Colonization with multidrug-resistant organisms now has implications for decisions about manage- ment 

strategies in patients who may require procedures such as bone marrow transplantation [42,43]. CRE colonization docu- 

mented before or after stem cell transplantation has resulted in an infection in 25.8% of autologous stem cell transplant 

patients and 39.2% of allograft stem cell transplant patients with Colonization and infection in patients with cystic fibrosis 

with Burkholderia spp. decline in pulmonary function and fatal disease [44], and this colonization has implications for 

lifesaving lung transplantation. However, despite all of the aforementioned adverse conse- quences of resistance on 

hospitalized patients, the community and the healthcare system, there are factors that mitigate these adverse consequences. 

On a daily basis, and sometimes sub- consciously, clinicians mitigate the negative impacts of antibac- terial resistance. 

Clinicians regularly broaden empiric antibacterial therapy or use combination therapy, they remove other foci of infection 

such as invasive devices and they attempt primary source control when faced with a deteriorating patient. Laboratories work 

to improve the rapidity of microbiological result reporting, and hospitals implement infection control precautions to prevent 

the adverse consequences of resistance. These responses to either suspected or proven antibiotic resistance may well be 

lifesaving, but carry with them conse- quences related both to increased Finally, the development of new antibiotic agents 

with improved spectrum of activity has the potential to mitigate some of the negative effects of antibiotic resistance although 

their development is alarmingly slow [48]. There has been a marked reduction since the 1980s in both the number of new 

antibiotics annually approved for marketing in the USA and the number of large multinational pharmaceutical companies 

actively developing antibacterial drugs [48]. 
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2.   CONCLUSION 

Selection for resistance in an organism in one part of the world can have lasting and important implications for human 

health globally. Over the past 50-60 years, resistance to antibiotics and bacteria MDR has spread and the negative effects 

of antibiotic resistance   have become more apparent. Clinicians are now frequently faced with the challenge of treating 

patients with MDR bacterial infections. Since the majority of treated infections are not microbiologically diagnosed, the 

true levels of the resistant organisms responsible are underestimated, leading to an underestimation of the negative impact 

of resistance. It is in the clinical context that antibiotic resistance, virulence, and endemism converge in MDR organisms to 

create the perfect storm for clinicians.This affects their empiric therapeutic options and also their likelihood of treatment 

success. For human health, antibiotic resistance is the cause of the loss of effectiveness of antibacterial agents if they are 

not used empiric, leading to worse consequences in the case of infections, failure of treatment. and prevention as well as 

costly side effects to health care delivery and treatment options. 
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